Deformability of poly(amidoamine) dendrimers.

نویسندگان

  • A Mecke
  • I Lee
  • J R Baker
  • M M Banaszak Holl
  • B G Orr
چکیده

Experimental data indicates that poly(amidoamine) (PAMAM) dendrimers flatten when in contact with a substrate, i.e. they are no longer spherical, but resemble flat disks. In order to better understand the deformation behavior of these branched polymers, a series of atomistic molecular dynamics simulations is performed. The resulting flattened dendrimer conformations are compared to atomic force microscopy (AFM) images of individual dendrimers at air/mica and water/mica interfaces. The ability of the polymers to deform is investigated as a function of dendrimer generation (2-5) and the required energies are calculated. Our modeling results show good agreement with the experimental AFM images, namely that dendrimers are highly flexible and capable of forming multiple interaction sites between most of their branch ends and the substrate. The deformation energy scales with dendrimer generation and does not indicate an increase in stiffness between generations 2 and 5 due to steric effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controllable photophysical properties and self-assembly of siloxane-poly(amidoamine) dendrimers.

Poly(amidoamine) dendrimers are typical luminescent polymers containing unconventional chromophores. A series of novel siloxane-poly(amidoamine) (Si-PAMAM) dendrimers were synthesized and investigated in this study. Their structures and properties were determined by NMR, XPS, LC/MS, and fluorescence spectroscopy. The introduction of Si-O-Si units in Si-PAMAM changed the photophysical properties...

متن کامل

Studying the Corrosion Protection Behavior of an Epoxy Composite Coating Reinforced with Functionalized Graphene Oxide by Second and Fourth Generations of Poly(amidoamine) Dendrimers (GO-PAMAM-2, 4)

In this research, graphene oxide (GO) nanoparticles were modified by second and fourth generations of poly(amidoamine) dendrimers in order to improve the particle dispersion quality in the epoxy matrix and therefore its barrier anti-corrosion performance. Confirmation on the GO surface modification by Polyamidoamine generation 2 (PAMAM2) and polyamidoamin generation 4 (PAMAM4) was carried o...

متن کامل

Post-synthesis dispersion of metal nanoparticles by poly(amidoamine) dendrimers: size-selective inclusion, water solubilization, and improved catalytic performance.

Intermetallic Pt(3)Ti nanoparticles are solubilized in water by using a generation-five, hydroxyl-terminated, poly(amidoamine) dendrimer, G5OH, as a post-synthesis surfactant. Pt(3)Ti nanoparticles, encapsulated in G5OH and dispersed over the electrode surface, exhibited a superior catalytic activity toward the electro-reduction reaction of oxygen compared to as-prepared, highly agglomerated na...

متن کامل

Low-Level Detection of Poly(amidoamine) PAMAM Dendrimers Using Immunoimaging Scanning Probe Microscopy

Immunoimaging scanning probe microscopy was utilized for the low-level detection and quantification of biotinylated G4 poly(amidoamine) PAMAM dendrimers. Results were compared to those of high-performance liquid chromatography (HPLC) and found to provide a vastly improved analytical method for the low-level detection of dendrimers, improving the limit of detection by a factor of 1000 (LOD = 2.5...

متن کامل

Internalization and toxicity of amine and hydroxyl terminated poly(amidoamine) dendrimers to photosynthetic microorganisms

Poly(amidoamine) (PAMAM) dendrimers are hyper-branched polymers with uniform size, defined molecular weight, large internal cavities and a high number of surface groups that make them particularly suitable for a number of biomedical and technological applications [1]. It has been found that surface functionalization is the main factor modulating the toxicity of dendrimers to mammalian cells lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European physical journal. E, Soft matter

دوره 14 1  شماره 

صفحات  -

تاریخ انتشار 2004